Bandlimited implicit Runge–Kutta integration for Astrodynamics

نویسندگان

  • Ben K. Bradley
  • Brandon A. Jones
  • Gregory Beylkin
  • Kristian Sandberg
  • Penina Axelrad
چکیده

We describe a new method for numerical integration, dubbed bandlimited collocation implicit Runge–Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in Astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. This new method allows us to use significantly fewer force function evaluations than explicit Runge–Kutta schemes. In particular, we use a low-fidelity force model for most of the iterations, thus minimizing the number of high-fidelity force model evaluations. We also investigate the dense output capability of the new scheme, quantifying its accuracy for Earth orbits. We demonstrate that this numerical integration technique is faster than explicit methods of Dormand and Prince 5(4) and 8(7), Runge–Kutta–Fehlberg 7(8), and approaches the efficiency of the 8th-order Gauss–Jackson multistep method. We anticipate a significant acceleration of the scheme in a multiprocessor environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aas 12-216 a New Numerical Integration Technique in Astrodynamics

This paper describes a new method of numerical integration and compares its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. By using generalized Gaussian quadratures for bandlimited functions, the implicit Runge-Kutta scheme (a collocation method) allows us to use significantly fewer force function evaluations than other integrators. The new method comput...

متن کامل

Aas 12-214 a Survey of Symplectic and Collocation Integration Methods for Orbit Propagation

Demands on numerical integration algorithms for astrodynamics applications continue to increase. Common methods, like explicit Runge-Kutta, meet the orbit propagation needs of most scenarios, but more specialized scenarios require new techniques to meet both computational efficiency and accuracy needs. This paper provides an extensive survey on the application of symplectic and collocation meth...

متن کامل

High-Order Implicit Time Integration for Unsteady Compressible Fluid Flow Simulation

This paper presents an overview of high-order implicit time integration methods and their associated properties with a specific focus on their application to computational fluid dynamics. A framework is constructed for the development and optimization of general implicit time integration methods, specifically including linear multistep, Runge-Kutta, and multistep Runge-Kutta methods. The analys...

متن کامل

A New Diagonally Implicit Runge-Kutta-Nyström Method for Periodic IVPs

A new diagonally implicit Runge-Kutta-Nyström (RKN) method is developed for the integration of initial-value problems for second-order ordinary differential equations possessing oscillatory solutions. Presented is a method which is three-stage fourth-order with dispersive order six and 'small' principal local truncation error terms and dissipation constant. The analysis of phase-lag, dissipatio...

متن کامل

Semi - Implicit Runge - Kutta Schemes Forthe Navier - Stokes Equations

The stationary Navier-Stokes equations are solved in 2D with semi-implicit Runge-Kutta schemes, where explicit time-integration in the streamwise direction is combined with implicit integration in the body-normal direction. For model problems stability restrictions and convergence properties are studied. Numerical experiments for the ow over a at plate show that the number of iterations for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014